
 

Abstract—The nonlinear position control of an
electrohydraulic actuator is approached by using two control
structures. The first is a direct near IO linearization of the
system model with piston position as output. The second is a
cascade controller with a near IO linearizing pressure force
controller as an inner-loop to a feedback plus feed forward
outer-loop position controller. It is shown in this paper that the
two control structures are theoretically equivalent.
Furthermore, the equivalence is exploited to extract a simple,
physically intuitive, tuning procedure for the gains of the two
controller structures. This is particularly significant for the
near IO linearizing position controller whose gains lack a
physically tractable interpretation that guides their selection.

Keywords: electrohydraulic actuator, cascade control, IO
linearization, position control

I. INTRODUCTION

lectrohydraulic actuators are used in a variety of
positioning and force generation applications where

their high load stiffness and high power-to-weight ratio make
them better choices than other rival actuation systems.
However, electrohydraulic actuators exhibit significant
nonlinearities in their dynamics. To obtain satisfactory
performance in the presence of these nonlinearities, elaborate
nonlinear controllers are often necessary.

The literature offers a wide variety of methods for
improving the position and force tracking performance of
electrohydraulic actuators. These include variants of linear
state feedback [1], adaptive control [1-4], variable structure
control [5] and Lyapunov-based controller designs [2, 6-8].
Each approach has its own strengths and limitations, which
are outlined in the respective listed references.

In this paper, two versions of position controllers are
derived based on feedback linearization. A formal theory of
feedback linearization is detailed in the texts [9, 10].
Feedback linearization involves the transformation of a
nonlinear system to a linear one via nonlinear state feedback
and input transformation. The linear system can then be
handled using results from linear control theory.

Perhaps the earliest study on the application of feedback
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linearization to electrohydraulic actuators was that of
Axelson and Kumar [11] in 1988. They presented the
derivation of the control laws emphasizing the nonlinearity
of valve flow only. Hahn, et al [12] derived a more detailed
controller for the position tracking case and presented
limited results from simulations with an inertia load.
Vossoughi and Donath [13] presented an analysis and
derivation of feedback linearizing controllers for velocity
tracking in a robotics application.

In the strictest sense, some assumptions are necessary to
put the model of an electrohydraulic actuator in a form that
approaches a partial feedback linearizable or an input-output
(IO) linearizable form. These necessary assumptions, often
tacitly overlooked in prior work, will be explicitly listed in
this paper. To make distinctions from a true IO linearization,
we use the name near IO linearization.

The focus of this paper is to present a tuning procedure for
the near IO linearizing position tracking controller by first
showing its equivalence with a cascade controller. The
cascade control of actuator piston position with classical and
linear state feedback was described in [14-16]. In this paper,
the cascade controller is constructed as a near IO linearizing
inner-loop pressure force controller and a feedback plus feed
forward outer-loop position controller. The main
contribution of the paper is in revealing the equivalence
between the cascade from and the near IO linearizing
position controller and outlining a physically intuitive gain
selection procedure for the latter.

The rest of the paper is organized as follows. Section II
presents the system model and lists the relevant assumptions
for the controller derivations. In Section III, the near IO
linearizing pressure force tracking controller is described. In
Section IV, the near IO linearizing position controller and
the cascade controller are discussed and their equivalence is
revealed. Some experimental results are presented in Section
V, and the conclusions in Section VI.

II. SYSTEM MODEL AND BASIC ASSUMPTIONS

A. SYSTEM MODEL

Physical models of electrohydraulic actuators are quite
widely available in the literature [16-19]. The model used
here applies to a four-way servovalve close-coupled with a
piston actuator as shown in Fig. 1. qt and qb, are flow rates
from the top chamber and to the bottom chamber of the
cylinder, respectively. qi represents internal leakage flow and
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qe,t and qe,b are external leakage. At and Ab represent the
effective piston areas, and Vt and Vb designate the volumes of
oil in the top and bottom chambers, respectively,
corresponding to the center position (xp=0) of the piston.
These include the volumes of oil in the short pipelines
between the close-coupled servovalve and actuator.
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Fig. 1. Schematic of a rectilinear actuator and servovalve

The chamber pressure dynamics are given by [19]:
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The external leakage flows, qe,b, and qe,t, are negligible.
The internal leakage past the piston seals is assumed to be
laminar, with a leakage coefficient, CL:

)( btLi ppCq −= (3)

The (mainly) turbulent flows via the sharp-edged control
orifices of the spool valve are modeled by [1, 18, 19]:
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where the function, sg(x), is defined by:
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Here, Kv,i, i = 1, 2, 3, 4 are the valve coefficients.
The force on the actuator piston due to the oil pressure is:

ttbbp pApAF −= (7)

Denoting the friction force on the piston by Ff and the load
force (such as a tensile force on fatigue test specimen) by FL,
and applying Newton’s Second Law, we have:
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Equations (1), (2), (8) and (9), with qb and qt given by (4)
and (5), constitute the state space model for the servovalve
and loaded actuator system. These equations also contain the
major nonlinearities in the system, which are the variable
position dependent hydraulic capacitance and the square root
flow rate versus pressure drop relations. Further nonlinearity
is introduced in (9) by a nonlinear friction force [20] and a
possibly nonlinear load force, FL.

B. Basic Assumptions for Derivation of the Control Laws

The servovalve is assumed to be critically centered, i.e.,
underlap/overlap lengths are neglected. Instead, an offset
value of the valve position is estimated during calibration to
take into account abrasion-induced null offsets [19]. Also,
the valve spool dynamics are neglected, i.e, the valve spool
position is assumed to be related to the servovalve current
through a static gain Gv, as:

vvv xGi = (10)

where, voffvv iii −= , and voffvv xxx −= , with ivoff and

xvoff representing the current offset and valve spool position
offset, respectively. In this paper, we choose to consider the
servovalve current as the control variable. The flow rates to
and from the cylinder chambers are then rewritten as:

RbRbvv

bSbSvvb

ppppisgC

ppppisgCq

−−−

−−−=

)sgn()(

)sgn()(

2,

1, (11)

tStSvv

RtRtvvt

ppppisgC

ppppisgCq

−−−

−−−=

)sgn()(

)sgn()(

4,

3, (12)

where the new valve coefficients are given by:
4,3,2,1,, == iKGC ivviv (13)

The form of the flow rate equations given by (11) and (12)
allow us to estimate the valve coefficients Cv,i from quick
offline experiments; see for e.g., [1] (pp 184-186). To
simplify the analysis, we assume perfect knowledge of the
necessary parameters. The supply (pS) and return (pR)
pressures at the servovalve are also assumed to be constant.

One more assumption is necessary to allow feedback
linearization. This regards as to whether the control input
appears affine in the system model. This assumption is
described following the controller expression (22).

III. PRESSURE FORCE TRACKING CONTROL

Taking the derivative of the pressure force on the piston in
(7), and using (1) and (2), it can be shown that:
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Using (11) and (12) for qb and qt, (14) can be rewritten as:
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where the nonlinear functions, fF and gF, are, respectively:

ptt

btLet

pbb

btLeb

ptt

t

pbb

b
eptbppF

xAV

ppCA

xAV

ppCA

xAV

A

xAV

A
xppxxf

−
−

+
+

−

+
−

+
+

−=

)()(

),,,(
22

ββ

β
(16)

<−−
−

+

−−
+

≥−−
−

+

−−
+

=

0sgn

sgn

0sgn

sgn

sgn

vtStS
ptt

vet

RbRb
pbb

veb

vRtRt
ptt

vet

bSbS
pbb

veb

vtbpF

ifor|p|p)p(p
xAV

CA

|p|p)p(p
xAV

CA

ifor|p|p)p(p
xAV

CA

|p|p)p(p
xAV

CA

))(i,,p,p(xg

(17)
Equation (15), with fF and gF defined by (16) and (17),

respectively, contains all the major modeled nonlinearities in
the hydraulic system arising from fluid compliance and
turbulent orifice flow. Also, the derivative of the output
piston force, Fp, is seen to be piecewise linear in the control

input ( vi ). This suggests that piecewise IO linearization can

be performed in the domains ( 0≥vi and 0<vi )[9, 10].

The nonlinearities in the pressure force dynamics (15) can be
cancelled by choosing the control input:
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where v is a new (transformed) control input. The pressure
force dynamics (15) reduces to:

vFp = (19)

This is a simple linear integrator. Exponentially
convergent tracking of a desired differentiable piston force
profile (Fp,d) can be achieved by choosing v as follows:

)( ,, dppodp FFkFv −−= (20)

The force tracking error dynamics are given by:

0=+ FoF eke (21)

where eF is the force tracking error, eF=Fp-Fp,d.
In terms of the tracking error, eF, the control current is:
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It is important to note that (22) cannot be solved “as is”,

since it contains the control variable, vi , on both sides of an

equation involving the sgn function. A practical solution to
this problem becomes evident when considering the digital
implementation of the piecewise IO linearizing controller.

The sign of the value of vi at the previous time step can be

used to compute the value of vi at the current time step, if it

can be supposed that the current does not change signs at a
rate faster than the sampling rate (approached by using a fast
sampling rate). However, it is difficult to analytically prove
that this approach does not lead to control chatter. This
chatter problem has not been reported previously in the
literature that discusses feedback linearization for hydraulic
drives [12, 13, 20]. Nevertheless, the term near input-output
(near IO) linearization is adopted here to make the explicit
admission that the present controller is not a true IO
linearizing controller.

The IO linearization thus achieved is of relative degree
one. The stability of the internal dynamics rendered
‘unobservable’ is easily handled by introducing the concept
of the load pressure/differential pressure [1, 18, 20].

IV. PISTON POSITION TRACKING CONTROL

A. Near IO linearizing Position Controller

In this subsection, piecewise IO linearization is performed
with piston position, xp, as the system output. The first and
second derivatives of the output position, xp, as given by (8)

and (9) do not contain the control input, vi , However,

further differentiation of (9) gives:
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where the nonlinear functions, fp and gp, are respectively:
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Proceeding as in the last subsection, (23) leads to a
piecewise IO linearization suggesting the control law:
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The closed loop position dynamics reduces to:

vx p = (27)

It leads to an exponentially convergent tracking when the
new input v is chosen as:

)()()( 123 dpdpdpd xxkxxkxxkxv −−−−−−= (28)

where xd is the desired position profile. The dynamics of the
closed loop position tracking error, e=xp-xd, reduce to:

0123 =+++ ekekeke (29)

The control law is rewritten as:
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The three gains k1, k2, and k3 can be chosen to place the poles
of the closed loop tracking error dynamics (29) strictly in the
left half s-plane. This could be done by using direct pole
placement or posing the problem as a linear optimal control
(such as LQR) problem [20]. However, neither approach
offers a clear physically intuitive guide for the choice of the
gains. In the next subsections, another approach is revealed.

It should be noted again that the piecewise IO
linearization performed is only a near IO linearization with
the description of the internal dynamics better handled using
the load pressure description [1, 18, 20].

B. Cascade Position Control

Recall that the near IO linearizing pressure force
controller cancels the natural velocity feedback on the
pressure force dynamics (15) by the first term of the
nonlinear function, fF. This cancellation decouples the
dynamics of the piston motion from the hydraulic
pressure/force dynamics. This fact forms the basis for the
cascade control of piston position by allowing one to treat
the actuator as a force generator with an inner-loop force Fp

tracking controller, and a feedback plus feed forward outer-
loop position controller computing the desired force profile.

Heintze and Van der Welden [14] compared an inner-loop
controller based on dynamic inversion with a cascade
controller which includes nonlinearity compensation in the
original constant-gain cascade form of Sepehri, et al [15].
Starting with a Lyapunov-like analysis, Sohl and Bobrow [8]
also presented a cascade position tracking controller. In this
paper, we focus on revealing certain useful facts about the
nonlinear cascade controller from a feedback linearization
framework.

We construct the desired pressure force profile (Fp,d) in
terms of the desired piston position profile in such a manner
that when the pressure force output is driven to the desired
force profile, the piston position output approaches the
desired position. Define Fp,d as:

gmFFxxkxxkxmF pfLdppdpvdpdp +++−−−−= )()(,

(31)
It is assumed here that accurate estimates of the friction

force and the load force are available and the piston mass is
known. The choice of the gains of kv and kp will be discussed
shortly. To further appreciate the choice of the form of Fp,d

in (31), recall the equation of motion:

gmFFFxm pfLppp −−−= (32)

Combining (31) and (32), the closed loop dynamics can be
expressed in terms of the position error, e=xp-xd:

Fdpppvp eFFekekem =−=++ , (33)

where eF=Fp-Fp,d is the pressure force tracking error. It has
already been argued that eF can be driven to zero using the

controller given by (22). Equation (33) shows that the
position error dynamics are given by a second-order linear
differential equation driven by eF. The gains kv and kp can
then be chosen to obtain a desired position error dynamics.
Fig. 2 shows a schematic for the implementation of this
cascade control structure.
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Fig. 2. Schematic of the cascade controller (known friction and load)

C. Equivalence of the two position controllers

First, note that the closed loop system with the cascade
position controller is of order three, as is the one with the
near IO linearizing position controller. Taking the derivative
of the desired pressure force (31), and using the result
together with (33) in the near IO linearizing pressure force
tracking controller of (22) it can be shown that:
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where fF and gF are given by (16) and (17), respectively.
Note that (34) has the same form as the near IO linearizing
position tracking controller given by (30). The two
controllers will be exactly the same when the gains satisfy:
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This shows the equivalence of the two position controllers.
Note that both the cascade controller leading to (34) and the
near IO linearizing position controller (30) have three linear
gains to be set. The question to pose at this point may be:
Which controller structure is better?

The cascade controller has certain apparent advantages
over the near IO linearizing controller. First, it gives a
simpler physical insight and interpretation that can aid in the
choice of the linear gains. The inner-loop pressure force
dynamics can be made as fast as desired by the choice of ko

via pole placement (s=- ko) of a first order linear dynamics
(21). The other gains, kp and kv, are simply coefficients of a
second-order linear dynamics (33) and they are easily
interpreted as factors in the natural frequency and damping
coefficient of the position outer-loop. A second advantage is
that the cascade form does not need feedback of acceleration
measurement (see (31)). It also does not require a third
derivative of the desired position trajectory to be available,
even though it is implicit that the third derivative must be
bounded due to the fact that the derivative of Fp,d is used by
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the inner-loop force controller.
However, the cascade control structure has a serious

disadvantage in that it involves online differentiation of the
desired force, Fp,d, which in itself is computed online from
feedback of position, velocity, and pressure, as well as the
estimates of friction and load forces. Since these signals are
susceptible to noise, high quality signal processing may be
necessary. The near IO linearizing position tracking
controller does not do such online differentiations.

Note that the gain relations (35) can be used in a reverse
argument (solving for k1, k2, k3) to guide the choice of the
gains for the near IO linearizing controller of (30). However,
closed form inversion of (35) results in complicated and
unwieldy expressions for the general case, and as such
readily available numerical solutions are recommended.

For the special case where all three closed-loop poles of
(29) are placed at the same location on the real axis, say s=-
a, a∈ℜ+, a simple, yet, very useful closed form result can be
derived. By expanding the characteristic polynomial (s+a)3

of (29) and using the equivalence in (35) one can arrive at:

pvppo amkmakak 2,, 2 === (36)

In fact, with the result in (36), the second-order position
error dynamics has a natural frequency of a (rad/s) and a
damping ratio of 1. A critically damped response is among
well behaved responses often chosen for the design of
position tracking outer-loop. Since ko= a, the first-order
force tracking inner-loop also has a break frequency of a.

The observation above provides a powerful tool for the
design of the cascade controller and also the near IO
linearizing position controller. This is particularly significant
for the latter since the interpretation of the gains k1, k2, k3, of
the near IO linearizing controller is not readily evident in the
third order dynamics of (29), but these gains can be tuned
indirectly by first specifying ko, kv, and kp of the cascade
interpretation and using the equivalence (35).

V. EXPERIMENTAL RESULTS

To demonstrate the use of the equivalence identified
above, some experimental results are included in this section.
We first remark that the test system employed does not
satisfy some of the assumptions made for controller
derivation in Section II. In particular, the servovalve
dynamics was not necessarily negligible, and the supply and
return pressure were not necessarily constant because of 3-m
long lines between the accumulators and the servovalve
ports. The results presented here are intended to mainly
demonstrate how the equivalence derived above can be used
to tune the nonlinear position controllers (the cascade form
or the near IO linearizing controller). In these tests, the load
force FL was zero and the friction Ff was estimated in real
time using classical approximations of static (Stribeck ) plus
Coulomb plus viscous [20] curves identified from offline
experiments. For the tests, a smooth step reference was
created using the tangent hyperbolic function.
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Fig.3. Equivalence of the near IO linearizing controller and the cascade
form. All poles chosen at s=-250.

Fig. 3 shows an experimental confirmation of the
equivalence of the near IO linearizing position controller and
the cascade controller. The three closed loop poles of (29)
were placed at s=-250. The resulting numerical values of the
cascade gains computed by (36) are kp=6.95E5 kg s-2,
kv=5560 kg s-1, and ko=250 s-1 for mp=11.12 kg. Note that
nearly identical performance was obtained despite the
differences in the two controller structures. However, it
remains possible that with different feedback signal
processing provisions, any of the strengths and weaknesses
of the two controllers noted above could surface.
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Fig. 4 Tuning the performance of the nonlinear position controllers with the

kp gain starting with all poles at s=-202.

Fig. 4 shows experimental results showing tuning of the
position controller (either the near IO linearizing or the
cascade controller) by changing the gain ko of the force loop
independently of the outer position loop. kp and kv were kept
constant. The tuning was started with all pole locations at s=-
202 which corresponds to kp=4.45E5 kg/s2, kv=4490 kg/s for
mp=11.12 kg, i.e, the second-order position error dynamics
has a natural frequency of 32 Hz and critical damping, and
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the force loop has a break frequency of 32 Hz.
Fig. 5 demonstrates tuning with the position loop gain kp

of the cascade. Similar tuning can be done using kv.
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VI. CONCLUSIONS

In this paper, two nonlinear controller structures were
outlined for the position control of an electrohydraulic
actuator. The first was a near IO linearization of the model of
the actuator with position output. And the second was a
cascade controller, comprising of a near IO linearizing
pressure force controller as an inner-loop to a feedback plus
feed forward position controller as outer-loop.

It was shown that the two controllers are equivalent, save
for their possible differences due to signal processing upon
implementation. Expressions were derived for the inter-
relationship between the gains of the two controllers and a
simple procedure for tuning either controller was outlined:

1. Choose the gains of the cascade controller: start with
all three poles of (29) at s=-a (a∈ℜ+), and use (36).

2. Tune the performance with ko, kp, and/or kv for the
cascade, or equivalently k1, k2, k3 obtained by
inverting (35) for the near IO linearizing controller.

This procedure is particularly significant for tuning the
linear gains k1, k2, k3 of the near IO linearizing position
controller, for which simple pole placement and optimal
criteria (such as LQR) do not yield physically intuitive
tuning rules.
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